ON THE THEORY OF HYPERSONIC FLOW
OVER BLUNT-NOSED SLENDER BODIES

By V. V. SycHEv

Summary—This paper is concerned with the two-dimensional and axially symmetric
hypersonic flows over blunt-nosed slender bodies. On the basis of investigation of the
entropy layer adjacent to the body surface it is shown, that for practical application of
the small-disturbance theory of hypersonic flow more precise knowledge of the entropy
layer thickness is required.

The method is given to introduce a correction to that effect and to plot a shape of
the body contour to which pressure distribution obtained on the basis of the small-
disturbance theory should be referred.*

1. ACCORDING to the small-disturbance theory of hypersonic flow, the
problem of flow around a two-dimensional or axisymmetric body of
low thickness ratio is equivalent to the problem of one-dimensional un-
steady gas flow due to the motion of a two-dimensional or cylindrical
piston ‘1),

Within this analogy, the class of the similar flows with strong shock
waves propagating conforming to a power law® corresponds to the
class of steady flows with shock waves of power-law shape

y=Cx" (1.1)

with the Mach Number of the undisturbed flow M, — oo . The values
of the exponent n, varying within the range

2
‘m'<f1<s (].2)

(» =0 and 1 for two-dimensional and axisymmetric flow respectively)
correspond to the flows around a power law convex body'®:

Y= " (13)
The case
2
n= ey (1.4)

is a singular one and corresponds to the blast wave problem®.
* Some of this paper’s results have been published™

[87]
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As in this case the relation ¢/C = 0, treatment of this case with respect
to the problem of steady flow is based on the assumption, that the finite
drag force is applied to the leading edge of the body of a vanishing
thickness. In other words, the analogy is drawn between a blast wave
phenomenon and the effect of the blunting of a slender body at a large
distance from the leading edge! 5 ¢,

As it is known'®, for the general case the principle of equivalence of
the flow around a blunt-nosed slender airfoil or body of revolution of
arbitrary shape leads to the problem of one-dimensional unsteady gas
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flow due to the action of a strong explosion on a plane or a straight line
with simultaneous influence of a two-dimensional or cylindrical piston
which begins expanding at the same moment of time.

The energy of explosion E per unit of area or length of charge in this
case is equalized to the drag of a blunting which is assumed to be known
from other considerations.

2. The small-disturbance theory of hypersonic flow cannot be applied
in the vicinity of the tip of the shock wave enveloping a blunt-nosed body,
as the velocity perturbations here are finite. The entropy values on the
streamlines crossing the surface of the shock wave in this region are highly
overestimated, and on the surface of the body (y = 0) the entropy appears
to be infinitely large, so that the density here is reduced to zero.

As a result, the small-disturbance theory is inapplicable in the whole
flow region of large entropy adjacent to the body surface (Fig. I).

Consider the flow in this region in detail.
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3. The equations of two-dimensional or axisymmetric gas flow after
a von Mises transformation from independent variables x, y to indepen-
dent variables x, »

(y—stream function) take the form

op s ov
i(L) =i (3.2)
ox \ o¥
oy s
oy~ o =
oy v
ox  u 9
7"
2.1 21 .,,i= 2
R S Us (3.5)

Where u, v—components of velocity vector, p—pressure, p—density, y—gas
specific heats ratio. The subscript oo here and below refers to the
undisturbed flow conditions, the static pressure of which is neglected.
The boundary conditions on the surface of the shock wave (1.1) are
of the form:

Y =0 Ux Y (%) (3.6)
u= Uy, [S— /—i—s %] 3.7
e A o) 49
p= %S 20U ;Y_;(:()—x) (3.9)
0= :; 000 (3.10)
¥y = Y(x) (3.11)

The corresponding relations of the small-disturbance theory are ob-
tained, if in the equation (3.3), (3.4) and the boundary conditions (3.8),
(3.9) we assume

u>=U, and s+Y?*x)=s

The equations (3.5), (3.7) are then omitted and the remaining set is
equivalent to the set of equations and boundary conditions of the one-
dimensional unsteady flow in terms of Lagrange variables.
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4. First let us use the explicit equations of Section 3 to evaluate the
pressure difference across the entropy layer near the body surface. Consider
this layer as a flow region formed by the streamlines crossing the surface
of the shock wave near its tip, where the angles of inclination of this surface
to the oncoming stream are not small:

Y(x)=s 4.1
If we denote the thickness or diameter of the body nose by d, then, the

increment of the stream function across the entropy layer is obtained
by means of equation (3.6):

Ay ~ o Ugo d*” 4.2)
For the particular case of power-law shock shape
Y(x) = Cx" (4.3)
on the basis of the expressions (4.1) and (3.6) we have
Itv
Ay ~ P U C1™" (4.4)

Everywhere outside the region of the body nose the angle of the shock
wave inclination 7 may be considered small and the following order esti-
mates may be written for the variables v, p and y:

v~ Uypt, p~o0Udt, y~71x (4.5)
and for the power-law shock waves
C
T “‘i;F:; OLGQ

Substituting these values in the equation (3.1), we determine that the
relative pressure differences across the entropy layer is of the order:

\14v n(1+v)
| ( i) i @7
P xT
Hence, for the general case when
d
X = a3y (48)
,tl+v
and for the particular case (4.3) when n 2?2”
AP s 4.9)
P

Thus within the accuracy of the small-disturbance theory (leading,
as we may easily see, to the same result) the pressure difference across



Hypersonic Flow over Blunt-nosed Slender Bodies 91

the entropy layer at sufficiently large distances from the leading edge may
be neglected. Therefore, the relation p(x, ¥), obtained on the basis of this
theory (but not p(x, y), as we shall see later), at the indicated distances
from the leading edge is uniformly valid within the whole flow field, the
entropy layer included.

5. To evaluate the relative thickness of the entropy layer, we shall
take the equations (3.2) and (3.3). From the condition of constancy of
entropy along the streamlines (3.2) and boundary conditions (3.9), (3.10)
we can determine that along the whole entropy layer

P eoUs
o' (0.K)

(5.1)

where K = Zj:-}» Using the estimated pressure value (4.5), we find that

the density is of the order:
0 ~ Qoo K1¥l (5.2)

Then, assuming u# ~ v, and using the equation (3.3) we find that the
relative thickness of the entropy layer is of the order:
Ay  Ap 1
~ ~ R (5.3)
3+v+2/y
It is negligibly small only at the distances x of the order of dfr 1tv »

by far exceeding the value (4.8), and for the particular case (4.3) only with

h= 3_}_1,_*_21,},

At the same time, when solving the problem on the basis of the small-
disturbance theory, the region of the entropy effect is many times larger,
due to which the body contour, corresponding to the shock wave of the
given shape, is determined with a larger error. In fact, when determining
the relative thickness of the entropy layer, we use in this case instead of
(3.9) the approximate equation for p on the shock wave surface of the form

2
R V2 v'2(x 5.
p 71 000 V3% ¥"2(X) (5.4
This leads, for instance in case of the power-law shock wave in the
vinicity of the nose, to the following value of the density:

2—2n
0 ~ 0o Kr¥1 C-2ny (%"ﬁ')?ﬁ (5.5)

* The order estimates analogous to (4.7) and (5.3) for the case of two-dimensional
flows with power-law shock waves were obtained in the paper!'*.
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As a result, integrating the equation (3.3) across the entropy layer we
obtain:

Ay N rntw 2 Jp N
— A - . 1-n b A I
¥ K " ' p Kz (2:9)
where 5 1 .
=T -
y n(l-+»)

With decrease in y and n the factor N may increase to large values
(Fig. 2), and the relative entropy layer thickness, determined on the basis
of the small-disturbance theory, can exceed its actual thickness many
times.
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6. Thus, utilizing the equivalence principle of the small-disturbance
theory of hypersonic flow in the problems of the steady flow over blunt-
nosed slender bodies requires more precise knowledge of the entropy
layer thickness, which (for the given shock shape) must lead to the cor-
responding correction of the body contour. According to Section 4 the
pressure distribution over the body surface, obtained on the basis of this
theory, must be referred to the new contour of the body. Practically,
it is convenient to determine the shape of the body corresponding to the
given shock shapz (3.11) by integrating the equation (3.3) across the whole
flow field for a number of fixed Xs.

The function p(x, y) here is known from solution of the corresponding
problem on the basis of the small-disturbance theory, and the relation

P — o(y) (6.1)

0.,
L4

7
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is known from the exact boundary conditions (3.6), (3.9), (3.10). Thus
we determine the density o(x, ).
Now we must determine more precisely the component of the velocity
vector u involved in (3.3) which was assumed above to be of the order V.
As everywhere, with the exception of the shock wave tip region,

e ]/ pL_ 2 P (6.2)

with a relative error of the order of 7°.
Substituting in this equation the order estimates for p and o obtained
earlier (4.5), (5.2), we determine, that

u \’ 23/
(—lj:) —1~7 L (6.3)

from which it follows that the equivalence principle is invalid in the
entropy layer and that it is necessary to utilize the formula (6.2) to deter-
mine u (to the required degree of accuracy). This equation closes the set
of relations required for calculation.

7. To determine the drag of the body, it is convenient to use the inte-
grated form of the momentum equation, which may be obtained on the
basis of (3.1) to (3.4) and in the limiting case of the flow with M, — o«
takes the form:

p v
Loy v )dytpy - dx =0 7.1
.{(gu . °°) R T L

Taking the zero streamline, the shock wave line and the straight line
x = [ = const, as a contour of integration, we obtain (using the boundary
conditions on the shock wave surface and the body surface) the following
expression for the drag x:

L N N AT (1.2
1

v
Tty PV Y )

The functions p(x, ), o(x, ¥), u(x, y) involved in this formula have
already been determined.

It should be noted, that though the shape of the body blunting cannot
be determined on the basis of the method under discussion, the drag of
this portion of the body is determined by the formula (7.2) to the same
degree of accuracy, as the drag of the remainder of the body.
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8. Let us now consider more thoroughly the solution of the problem
for a particular case of the flow with power-law shock waves (4.3). The
corresponding unsteady flow of gas in this case is similar. Usually the
results of integrating the equations of the similar flows of gas are expres-
sed in the form® 3

v=r,(x)f(2), o=0,(x)g(), p=p(x)h(A) (8.1)
where
-
Vs

and the subscript S refers to the shock wave conditions.
The stream function for similar flow required for calculation, satisfying
the differential equation

op Iy
may be readily determined as
y =y, (x) (4 (8.4)
where
da
1(2) = exp | —(1+) ] _— (8.5)
AN—A
yHﬂ)

This, together with (8.1), defines the relation p(x, %) which we can now
write, using (5.4) and (4.3), in the form:

2 _guvimcr @) (8.6)

P = 7+—1 x2(I-m)

The entropy distribution function is determined from (3.6), (3.8), (3.9)
and, taking into account (8.4), may be expressed:

p y—1 1\ 2 nC?
o =(~f+1 “5“) RO G ) @7
< P Koo (l—n)nn(1+v) +nzc2

Eliminating p and p from the last two equations, and then using the equa-
tion (6.2) we define U. Then

0 71
i G(x, 8.8
- sl (x, n) (8.8)

=L~— W e G0 ]m (8.9)

T x20-m

s
Veo
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where

x2(1-m 1 1y
G(x,n) = e Ho) (8.10)
2(1—”)773(1_”] +n2 Cz 1?

The equation (3.1) by changing the independent variable y for % is reduced
to take the form

voy  pe(X)
—_— = 11
e 8.11)

Substituting the determined function o (x, %), u (x, %) in this equation
and integrating with fixed Xs, we obtain the equation which determines
the shape and location of the streamlines of the flow under consideration :

G(x,m)dn e (8.12)
+1 J "/s o 4y w2 C? ]_{(7_?) G(x, 7)
Vo
The body contour can be determined by this equation, if the upper limit
of the integral is assumed to be zero. To determine the drag of the body,

let us use the equation (7.2). Substituting the values p, o and u determined
from (8.6), (8.8) and (8.9) in this formula we shall obtain:

2(y—1) n*C* 2 H(n) G(x,n)dn

Y@, m) = Cx* s+ 7

_ Q2

= s +v
BT 000 Vo CX")} (y+s)F x2-m f ]/ H(n)G(x 1;)
(v -l- )2 -
il i 4 H) G(x. )
+J h/ s_(y+yl)2 e nzuﬂ., L l]dn (8.13)

9. Consider some results of numerical calculations for the axisymmetric
case (v = 1) with the shock waves varying according to the power law

yi=Cx" (9.1)

The calculations were performed for the case with ¢ = 1.4, The functions
(8.1) were taken from the tables presented in references 2 and 7.

In Figs. 3 and 4 is given a comparison between the contours of the bodies,
obtained on the basis of the present method, and the corresponding re-
sults of the small-disturbance theory (the latter are plotted everywhere
by dotted lines). As we may see, the differences between them are quite
negligible already at n = 0.65, but at n = 0.5 the differences are very
large. The relative thicknesses of the bodies

L yxa) '
6(1) = y(x’ i)- (9.2)
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calculated on the basis of (8.11) are presented in Fig. 5 as functions of their
fineness ratio
X

1=3xa

(9.3)

As we may see, the relative thickness of the body corresponding to the
case n = 0.5 is far from being negligible even in the region of very large
values of A ~ 10%

Thus, the pressure distribution prescribed by the blast wave solution
to the blunt-nosed cylinder is actually realized on a body of a considerably
larger thickness ratio. Probably, this may explain a considerable numerical
difference between the pressure distribution on the surface of the cylinder
with hemispherical nose obtained in this way (taking into account finite
counterpressure) and the results of numerical calculation® for M, =
20 (Fig. 6).

Presented in Fig. 7 is a comparison between the velocity and density
profiles in the section / = 1.76, calculated by the formulas (8.8), (8.12)
for n = 0.5 and the corresponding results of the constant energy solu-
tion‘?),

10. The solution of the problem for the general case of the flow with
the shock formed on a blunt-nosed slender body of arbitrary shape pre-
sent considerable difficulties in view of the fact, that the corresponding
solution on the basis of the small-disturbance theory here is not similar.

To obtain approximate solution of the problem in this case, we may
use the well-known method of successive approximation'™?, based on
the expansion of the functions, to be determined, in power series of the
form:

v= VoY) +en+ -

P = 0 VE(Potep+ --)

0 (10.1)
0 ==>(eoteart--?)
y=Y(x)[s+ey,+ -]

where £ = %%i— The main drawback of this method is its inapplicability

to the calculation of flows with the regions of the small density, where
the initial assumption, that the flow is of a thin shock layer type, does
not hold. However, the only purpose of using this method here is deter-
mination of the function p(x, y), with respect to which this method pos-
sesses a high degree of accuracy. The last is due to the fact that a pres-
sure difference in a low density region can not be considerable. Let us
consider this in greater detail for the case of flows with the shock waves
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of power law shape. Defining the region of inapplicability of the method
of successive approximation as the part of flow field where
0< 0o (10.2)

and using the equation (9.2), boundary conditions (3.6), (3.10), (5.4) and
pressure estimation (4.5) we may obtain for variation of the streamline
function in the region under consideration the expression

) QC\, Vm Cl+\?l—n(1+v)

Ap< S (10.3)
K 2(1—n)

H

L0

P
v
A
/
25 7
’ r
//
L
V4 45 » V7

Fic. 8.

Then the equation (3.1) evaluates the pressure difference across the small
density layer as follows:
Ap 1 2
— p e 10.4
L <5 (n > ) (10.4)
1
from which it follows that this ratio is small at sufficiently small ¢ = %

Presented in Fig. 8, as an example, is the relation H(z) to be found (8.6)
for the case corresponding to the cylindrical blast wave solution » =1,
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1 ; B
n=-s when the method of successive approximation is the most doubtful.

The appropriate formula of the second-order approximation is:

A = !,?2*_’1 -1-5[2 In 1"251’ - g'(f {73]5] (10.5)
and, as we see, its agreement with the exact solution is quite satisfactory
(at y = 1.4; £ = 1/6).

11. All the results obtained in this paper referred to the hypersonic
flows of the perfect gas with the constant specific heats for the limiting
case of M, — oo.

The extension of the results for the cases of the thermodynamically
equilibrium real-gas flow with finite values of M., presents no principal
difficulties.

A substantial simplification may be achieved in this case by dividing
the problem in two independent parts.

Taking into account the value M., being finite (the finite counter-
pressure) is evidently significant only when determining the pressure
distribution function p(x, y), i.e. it may be carried out by the usual
methods® # when solving the corresponding problem on the basis of the
small-disturbance theory.

On the other hand, taking into consideration the real-gas properties
at high temperature is of importance only in the entropy layer of the flow,
formed by the streamlines crossing the shock wave in the region of its
highest intensity. This allows, when solving the second part of the problem
(determining the relations o(x, %), u(x, ) and integrating the equation
(3.1)), to a sufficient degree of accuracy, to use the approximate shock
wave relations without taking the finite counterpressure into account.

These relations, as well as the energy equation and the adiabatic con-
dition, should be changed for relations which take into account the real
dependence of the specific enthalpy and the specific entropy of the gas
upon the pressure and density.
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